
Week 9 - Wednesday

 What did we talk about last time?
 N-Queens
 Reading text files

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 When a Scanner is reading from the keyboard, it has no idea what the
user will type next

 However, when a Scanner is reading from a file, it can examine the text
it hasn't read yet

 A number of methods are available to tell you if there's some properly
formatted data just ahead waiting to be read:
 hasNextInt() There's an intwaiting to be read
 hasNextDouble() There's a doublewaiting to be read
 hasNext() There's a Stringwaiting to be read
 hasNextLine() There's a line waiting to be read

 Such methods are often used in a while loop to keep reading data until
the end of the file is reached

 What if the file with name fileName doesn't exist?

 Creating a Scanner from a File object will throw a
FileNotFoundException if the file doesn't exist or isn't accessible

 As you might recall, a FileNotFoundException is a checked exception
 You will need to surround the Scanner constructor in a trywith a catch

that handles this exception or you can add a throws declaration to your
method

 You will often want to have a try-catch so that you can recover from the
missing file and ask the user for a new file name (or similar)

Scanner in = new Scanner(new File(fileName));

 The file doesn't have to be a simple name like input.txt
 Instead, it can be a path, giving directories that lead up to the file
 Paths come in two kinds
 A relative path is relative to the current working directory, which

is the project folder for Eclipse projects:
 data\experiments\mutagens\ninja-turtles.txt

 An absolute path specifies the whole path, starting with a drive
letter in Windows or a / in Linux/macOS:
 C:\users\wittman1\Documents\Music\Beastie
Boys\intergalactic.mp3

 In paths, . means the current directory and .. means the parent
directory
 goats\.\boats\..\ Is the same as goats\

 To separate directories (also called folders), Windows uses the backslash
(\) and Linux/macOS uses the forward slash (/)

 To make it easier to write platform-independent code, Java generally
accepts either one

 You will sometimes store path names inside String literals, requiring you
to escape backslashes with another backslash:

 String path =
"C:\\users\\wittman1\\Documents\\Music\\Beastie
Boys\\intergalactic.mp3";

 It's easier to use all forward slashes so that you don't have to escape them

 What if you open a file thinking it's full of integers, but the
numbers have decimal points…or are text, not numbers?

 One of the following exceptions can be thrown:
 InputMismatchException The input isn't formatted right
 NoSuchElementException You've reached the end of the file
 IllegalStateException You're trying to read from a closed

Scanner
 All of these exceptions are unchecked exceptions
 You don't have to have a try-catch or a throws declaration
 And you generally won't, unless you expect the input to be badly

formatted?

 Writing to files uses a different sequence of steps
 If you want to write to a text file, you've got to create a
PrintWriter object, based on a FileOutputStream
object (which takes the file name as a parameter)

 Once you've got a PrintWriter, you can use it just like
System.out

PrintWriter out = new PrintWriter(new
FileOutputStream ("output.txt"));

 Just like making a Scanner from a File, making a
PrintWriter from a FileOutputStream can
potentially throw a FileNotFoundException

 Weird, isn't it? But Java throws this exception when you're
unable to open the file for writing, for whatever reason

 Since it's a checked exception, you need a try-catch or a
throws

 This example opens a file called goodbye.txt, writes some
text, and then closes the file

 Note that we are not showing the try-catch or throws
PrintWriter out = new PrintWriter(new
FileOutputStream ("goodbye.txt"));

out.println("So long!");
out.println("Farewell!");
out.println("Auf Wiedersehen!");
out.println("Goodbye!");
out.close();

 You should always close files as soon as you're done reading
from them or writing to them

 If you don't close files you're writing to before your program
ends, output can be lost

 Keeping files open ties up system resources
 There's a maximum number of files one program can have

open at a time
 Since we always want to close files, it's smart to put the

closing in a finally block

 This example copies the text from input.txt to output.txt
Scanner in = null;
PrintWriter out = null;
try {
in = new Scanner(new File("input.txt"));
out = new PrintWriter(new FileOutputStream ("output.txt"));
while(in.hasNextLine())

out.println(in.nextLine());
}
catch(FileNotFoundException e) {
e.printStackTrace();

}
finally {
if(in != null) in.close();
if(out != null) out.close();

}

 Prompt the user for an input file name and an output file
name

 Read in every white-space delimited word from the input file
 If it's a palindrome, output it to the output file
 Close both files

 Prompt the user for an input file name
 If the file isn't accessible, prompt the user to enter the name

again
 Read in all the integers in this file (until you run out)
 Close the file
 Store all the values in an ArrayList<Integer>
 Sort them
 Find the mode (the value that appears the most)

 Reading and writing binary files
 Serialization

 Work on Project 3
 Form teams if you haven't

 Keep reading Chapter 20

	COMP 2000
	Last time
	Questions?
	Project 3
	Files
	Reading
	Scanner methods
	New Scanner powers
	Back to opening the file…
	File paths
	Path peculiarities
	Badly formatted data
	Writing
	More exceptions!
	Writing example
	Shut 'em down!
	Full example
	File I/O practice
	More practice
	Upcoming
	Next time…
	Reminders

