
Week 9 - Wednesday

 What did we talk about last time?
 N-Queens
 Reading text files

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 When a Scanner is reading from the keyboard, it has no idea what the
user will type next

 However, when a Scanner is reading from a file, it can examine the text
it hasn't read yet

 A number of methods are available to tell you if there's some properly
formatted data just ahead waiting to be read:
 hasNextInt() There's an intwaiting to be read
 hasNextDouble() There's a doublewaiting to be read
 hasNext() There's a Stringwaiting to be read
 hasNextLine() There's a line waiting to be read

 Such methods are often used in a while loop to keep reading data until
the end of the file is reached

 What if the file with name fileName doesn't exist?

 Creating a Scanner from a File object will throw a
FileNotFoundException if the file doesn't exist or isn't accessible

 As you might recall, a FileNotFoundException is a checked exception
 You will need to surround the Scanner constructor in a trywith a catch

that handles this exception or you can add a throws declaration to your
method

 You will often want to have a try-catch so that you can recover from the
missing file and ask the user for a new file name (or similar)

Scanner in = new Scanner(new File(fileName));

 The file doesn't have to be a simple name like input.txt
 Instead, it can be a path, giving directories that lead up to the file
 Paths come in two kinds
 A relative path is relative to the current working directory, which

is the project folder for Eclipse projects:
 data\experiments\mutagens\ninja-turtles.txt

 An absolute path specifies the whole path, starting with a drive
letter in Windows or a / in Linux/macOS:
 C:\users\wittman1\Documents\Music\Beastie
Boys\intergalactic.mp3

 In paths, . means the current directory and .. means the parent
directory
 goats\.\boats\..\ Is the same as goats\

 To separate directories (also called folders), Windows uses the backslash
(\) and Linux/macOS uses the forward slash (/)

 To make it easier to write platform-independent code, Java generally
accepts either one

 You will sometimes store path names inside String literals, requiring you
to escape backslashes with another backslash:

 String path =
"C:\\users\\wittman1\\Documents\\Music\\Beastie
Boys\\intergalactic.mp3";

 It's easier to use all forward slashes so that you don't have to escape them

 What if you open a file thinking it's full of integers, but the
numbers have decimal points…or are text, not numbers?

 One of the following exceptions can be thrown:
 InputMismatchException The input isn't formatted right
 NoSuchElementException You've reached the end of the file
 IllegalStateException You're trying to read from a closed

Scanner
 All of these exceptions are unchecked exceptions
 You don't have to have a try-catch or a throws declaration
 And you generally won't, unless you expect the input to be badly

formatted?

 Writing to files uses a different sequence of steps
 If you want to write to a text file, you've got to create a
PrintWriter object, based on a FileOutputStream
object (which takes the file name as a parameter)

 Once you've got a PrintWriter, you can use it just like
System.out

PrintWriter out = new PrintWriter(new
FileOutputStream ("output.txt"));

 Just like making a Scanner from a File, making a
PrintWriter from a FileOutputStream can
potentially throw a FileNotFoundException

 Weird, isn't it? But Java throws this exception when you're
unable to open the file for writing, for whatever reason

 Since it's a checked exception, you need a try-catch or a
throws

 This example opens a file called goodbye.txt, writes some
text, and then closes the file

 Note that we are not showing the try-catch or throws
PrintWriter out = new PrintWriter(new
FileOutputStream ("goodbye.txt"));

out.println("So long!");
out.println("Farewell!");
out.println("Auf Wiedersehen!");
out.println("Goodbye!");
out.close();

 You should always close files as soon as you're done reading
from them or writing to them

 If you don't close files you're writing to before your program
ends, output can be lost

 Keeping files open ties up system resources
 There's a maximum number of files one program can have

open at a time
 Since we always want to close files, it's smart to put the

closing in a finally block

 This example copies the text from input.txt to output.txt
Scanner in = null;
PrintWriter out = null;
try {
in = new Scanner(new File("input.txt"));
out = new PrintWriter(new FileOutputStream ("output.txt"));
while(in.hasNextLine())

out.println(in.nextLine());
}
catch(FileNotFoundException e) {
e.printStackTrace();

}
finally {
if(in != null) in.close();
if(out != null) out.close();

}

 Prompt the user for an input file name and an output file
name

 Read in every white-space delimited word from the input file
 If it's a palindrome, output it to the output file
 Close both files

 Prompt the user for an input file name
 If the file isn't accessible, prompt the user to enter the name

again
 Read in all the integers in this file (until you run out)
 Close the file
 Store all the values in an ArrayList<Integer>
 Sort them
 Find the mode (the value that appears the most)

 Reading and writing binary files
 Serialization

 Work on Project 3
 Form teams if you haven't

 Keep reading Chapter 20

	COMP 2000
	Last time
	Questions?
	Project 3
	Files
	Reading
	Scanner methods
	New Scanner powers
	Back to opening the file…
	File paths
	Path peculiarities
	Badly formatted data
	Writing
	More exceptions!
	Writing example
	Shut 'em down!
	Full example
	File I/O practice
	More practice
	Upcoming
	Next time…
	Reminders

